Top

求大数的n次方对m取模(欧拉降幂)


求2^n次方对mod取模,n为一个大数

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
#include <stdio.h>
#include <bits/stdc++.h>
using namespace std;
typedef long long ll;

const int INF = 0x3f3f3f3f;
const int MAXN = 1e5 + 10;
const int MOD = 1e9 + 7;
char s[MAXN];

long long phi(long long x)
{
long long ret = x;
for (int i = 2; i * i <= x; ++i)
if (x % i == 0)
{
ret -= ret / i;
while (x % i == 0)
x /= i;
}
if (x > 1)
ret -= ret / x;
return ret;
}
ll mpow(ll a, ll n, ll m) //a ^ n % m
{
ll t = 1;
while (n)
{
if (n & 1)
t = (t * a) % m;
a = (a * a) % m, n >>= 1;
}
return t;
}
int main()
{
#ifdef LOCAL
//freopen("C:/input.txt", "r", stdin);
#endif
int T;
cin >> T;
while (T--)
{
ll n = 0, p = phi(MOD);
scanf("%s", s); //求2^s次方 s为一个大数
for (int i = 0; s[i]; i++)
n = (n * 10 + s[i] - '0') % p;
n += p - 1;
ll ans = mpow(2, n, MOD);
cout << ans << endl;
}

return 0;
}


未经允许不得转载: Anoyer's Blog » 求大数的n次方对m取模(欧拉降幂)